

It's how we treat people.

Implementing High Intensity Gait Training in a Patient with Parkinson's Disease: A Case Report Kacey Kennedy

Patient History

- 72-year-old male
- PMH: HTN, HLD, MI, Parkinson's Disease (PD)- onset 2015, dementia, mood disorder, OCD, BPH, and lumbar spondylosis w/ radiculopathy
- Admitted for T11-S1 extension of fusion due to increased low back pain and bilateral radiculopathy
- PLOF: living in independently living facility, independent with all mobility, although safety with mobility was questionable

Initial Presentation

BLE Strength	Grossly 4/5
Posture	Kyphotic, retropulsive
Ambulation	Short, shuffled stepping; freezing of gait in tight or busy spaces
Mobility	Min-mod A for bed mobility, mod A sit <> stand and SPT, and min- mod A amb
10MWT	0.1 m/s with RW
Berg Balance Scale	4/56

PD and High Intensity Gait Training (HIT)

- Aqua based training, gait/balance/functional training, and training that consists of several type of exercise might have moderate beneficial effect on motor signs on Unified Parkinson's Disease Rating Scale (Ernst et al 2023)
- HIT is standard of practice for treating neurologic diseases including CVA and SCI
 - CVA- improved balance, walking endurance, walking speed outcomes (Moore et al 2020)
 - SCI- task specific training at high intensities results in greater walking speed outcomes (Lotter et al 2020)
- Limited knowledge on HIT in PD
 - High Intensity treadmill exercise may be feasible for patients with PD (Shenkman et al 2018)

Interventions- Heart Rate Zone

Sessions

Interventions- Biomechanical Subcomponents

Interventions

Biomechanical Component	Intervention
Propulsion	Treadmill, stairs
Stance Control	Weighted vest, stairs
Postural Stability	Multi directional walking, walking without UE support
Limb Advancement	Leg weights

Status at Discharge

	Admission	Discharge
Ambulation	Short shuffled steps, FOG	Increased step length, reduced FOG, and reduced cadence
Level of Assist	Min-mod A	Independent with RW
10MWT	0.1 m/s with RW	0.71 m/s with RW
Berg Balance Scale	4/56	35/56

Conclusion

- Implementing HIT in this patient with PD improved his functional outcomes
- Supports evidence that high intensity, task specific gait training can improve balance and walking outcomes
- Should be an area for future research for patients with PD

Future Considerations

- What went well: no adverse events, patient satisfaction
- Areas for Improvement: Increasing time in zone
- Further considerations/ improvements: Integrating music therapy during HIT sessions

References

- Ernst M, Folkerts AK, Gollan R, Lieker E, Caro-Valenzuela J, Adams A, Cryns N, Monsef I, Dresen A, Roheger M, Eggers C, Skoetz N, Kalbe E. Physical exercise for people with Parkinson's disease: a systematic review and network meta-analysis. (Review). *Cochrane Library*. 2023; Issue 1. doi: 10.1002/14651858.CD013856.pub2
- Moore JL, Nordvik J, Erichen A, Rosseland I, Bø E, Hornby TG, FIRST-Oslo Team. Implementation of High-Intensity Stepping Training During Inpatient Stroke Rehabilitation Improves Functional Outcomes. *Stroke*. 2020; 52(2). doi: 10.1161/STROKEAHA.119.027450.
- Lotter JK, Henderson CE, Plawecki A, Holtus ME, Lucas EH, Ardestani MM, Schmit BD, Hornby TG. Task-Specific Versus Impairment-Based Training on Locomotor Performance in Individuals With Chronic Spinal Cord Injury: A Randomized Crossover Study. *Neurorehabilitation Neural Repair*. 2020; 34(7). doi: 10.1177/1545968320927384.
- Schenkman M, Moore CG, Kohrt WM, et al. Effect of High-Intensity Treadmill Exercise on Motor Symptoms in Patients With De Novo Parkinson Disease: A Phase 2 Randomized Clinical Trial. *JAMA Neurol.* 2018;75(2):219–226. doi:10.1001/jamaneurol.2017.3517

