What's New in Amputee Rehabilitation?

Michelle Jamin, PT, DPT

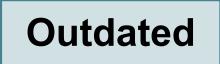
Objectives

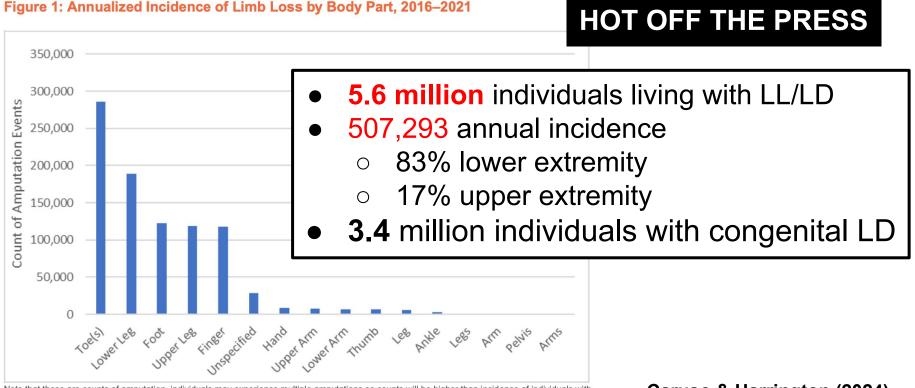
- 1. Epidemiology UPDATE!!
- 2. Review "normal" biomechanics of gait
- 3. Analyze the FLAG Assessment as a clinical outcome measure
- 4. Perform observational gait analysis using the FLAG Assessment
- 5. Develop PT interventions designed to restore gait biomechanics
- 6. Identify problem solving solutions for prosthetic-related concerns in PT

Epidemiology of Amputation

Estimating the Prevalence of Limb Loss in the United States: 2005 to 2050

• 185,000 individuals have an amputation annually (UE or LE)


	2005 Estimate	2050 Estimate
Persons living with limb loss	1.6 million	3.6 million
Dysvascular related amputations	<1 million	2.3 million


Ziegler-Graham et al. (2008)

Estimating the Prevalence of Limb Loss in the United States: 2005 to 2050

- No national database existed to monitor limb loss (LL)
- 1st study since 1996 to provide estimated prevalence on LL.
- Estimations based on data from National Inpatient Sample (NIS) from <u>1988-1999</u>
 - Included major and minor amputations
 - Excluded congenital limb loss & amputations at federal facilities

Prevalence of Limb Loss and Limb Difference in the United States: Implications for Public Policy

Note that these are counts of amputation, individuals may experience multiple amputations so counts will be higher than incidence of individuals with limb loss.

Caruso & Harrington (2024)

Prevalence of Limb Loss and Limb Difference in the United States: Implications for Public Policy

- **Toes** = most common
 - o 57.6% had diabetes comorbidity
- Common comorbidities:
 - Infection (42.8% of individuals)
 - Vascular conditions (39.3%
 - Ulcer (37.7%)
 - Osteomyelitis (26.5%)
- Trauma: 12.9%
- Age:
 - \circ 44.6% \geq 65 years old
 - 41.7% aged 45-64

Prevalence of Limb Loss and Limb Difference in the United States: Implications for Public Policy

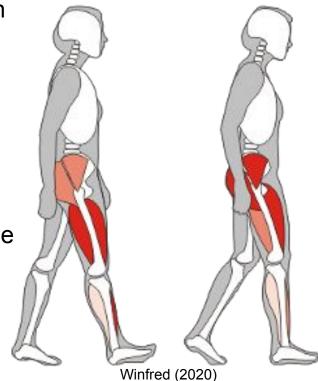
Megan Caruso and Shelby Harrington | 2.14.24

Limb Loss and Preservation Registry (LLPR)

- Launched by Mayo Clinic in May 2022
 - Until now, NO national database existed for measuring quality outcomes for patients with a limb loss or limb difference.

• Goal is to gather data from:

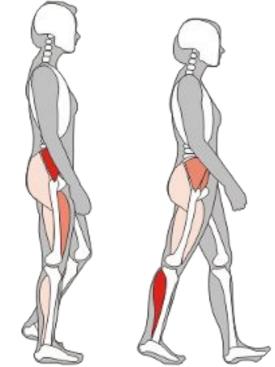
- Hospitals regarding amputations
- Providers regarding care given
- Patient outcomes

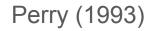

LIMB LOSS and PRESERVATION REGISTRY[®]

Activity is health.[®] ———

Review of anatomical gait

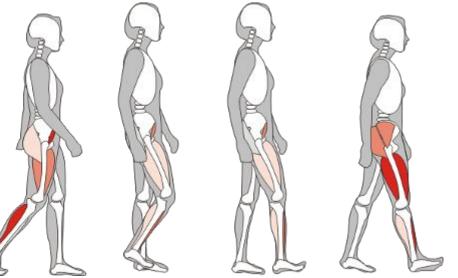
Task 1: Weight Acceptance


- **Task:** transfer of body weight onto the limb as soon as it makes contact with the ground
- Functional Demands:
 - Shock absorption
 - Initial limb stability
 - Maintain forward progression
- Occurs during: Initial Contact & Loading Response
 - Most demanding task in the gait cycle

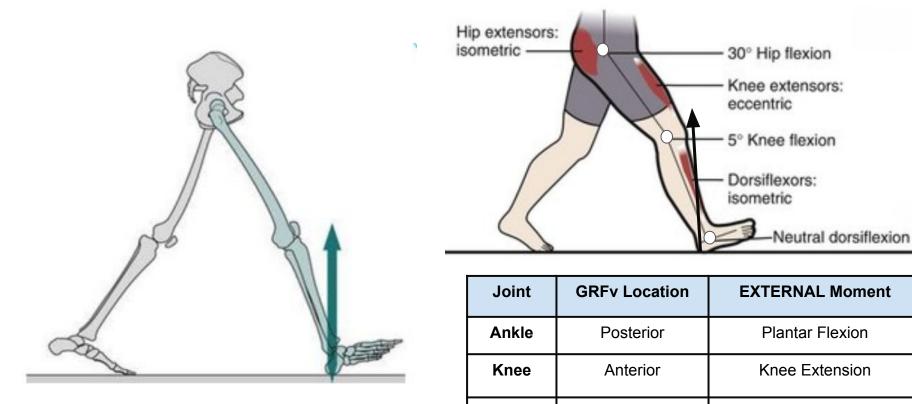


Perry (1993)

Task 2: Single Limb Support (SLS)


- Task: Progression of the body over the fixed foot
- Functional Demands:
 - Limb and trunk stability
 - Progression of the body beyond the stationary foot
- Occurs during: Midstance & Terminal Stance
 Begins with lifting of the other foot for swing

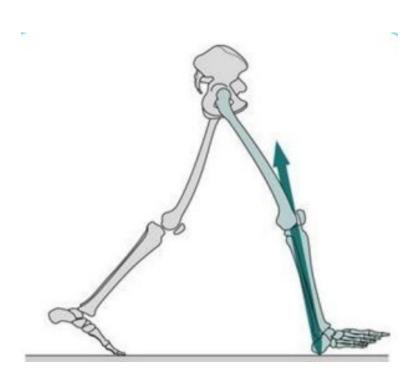
Task 3: Single Limb Advancement (SLA)

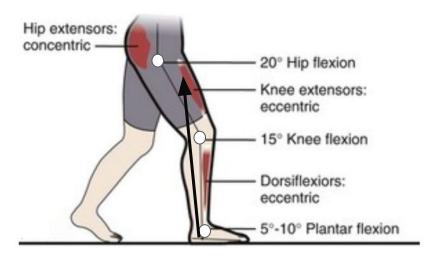

- **Task:** Preparatory posturing for swing, then limb clears the ground, advances forward
- Functional Demands:
 - Preparation of the limb for swing
 - Accelerate progression
 - Limb advancement
 - Foot clearance
- Occurs during: Pre-swing, Initial swing, Mid-swing and Terminal swing

Winfred (2020)

Perry (1993)

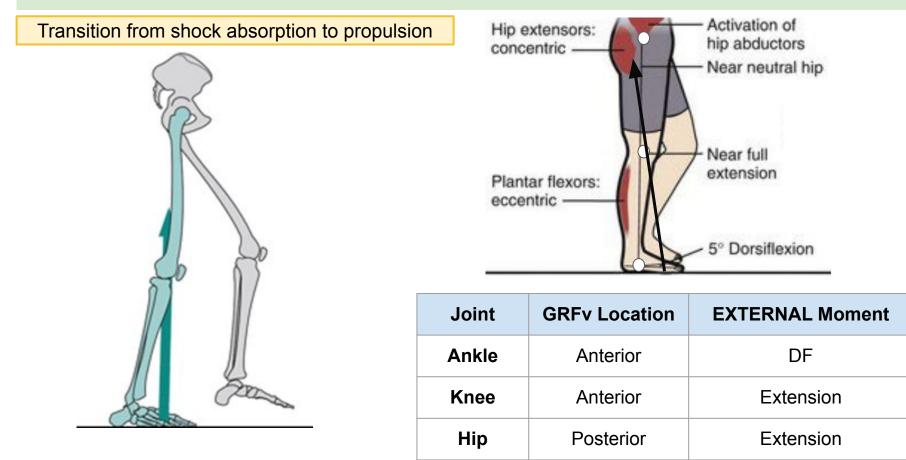
Initial Contact: initiates weight acceptance, shock absorption

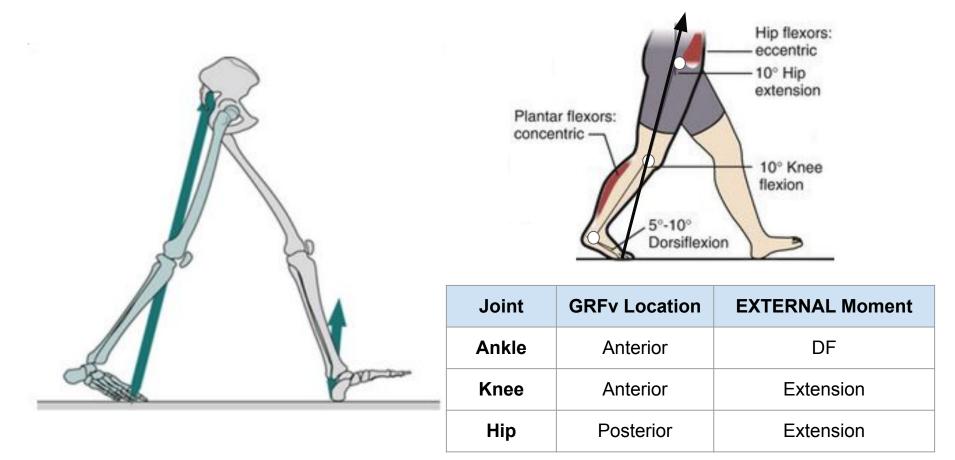



Hip

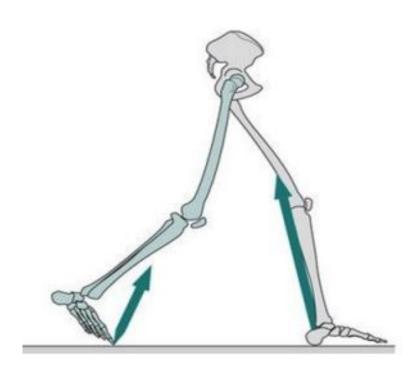
Anterior

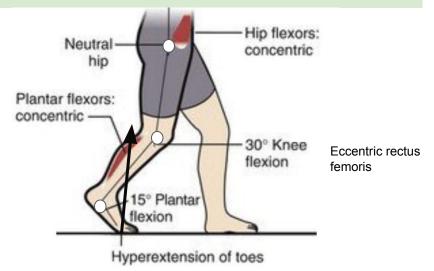
Hip Flexion


Loading Response: "foot flat", controlled foot descent, shock absorption



Joint	GRFv Location	EXTERNAL Moment
Ankle	Posterior	PF
Knee Posterior		Flexion
Нір	Anterior	Flexion


Midstance: tibial advancement over fixed foot



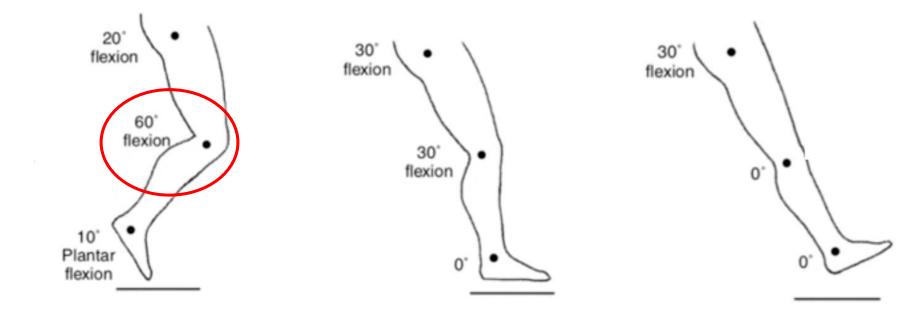
Terminal Stance: "heel rise", progression beyond supporting limb

Pre-Swing: "toe off"; propulsion

Joint GRFv Location		EXTERNAL Moment
Ankle	Anterior	DF
Knee Posterior		Flexion
Hip Posterior		Extension

Swing Phase

Initial Swing (ISw)


- Foot clearance
- Advancement of limb

Mid Swing (MSw)

• Advancement of limb

Terminal Swing (TSw)

- Advancement of limb
- Prepare for stance

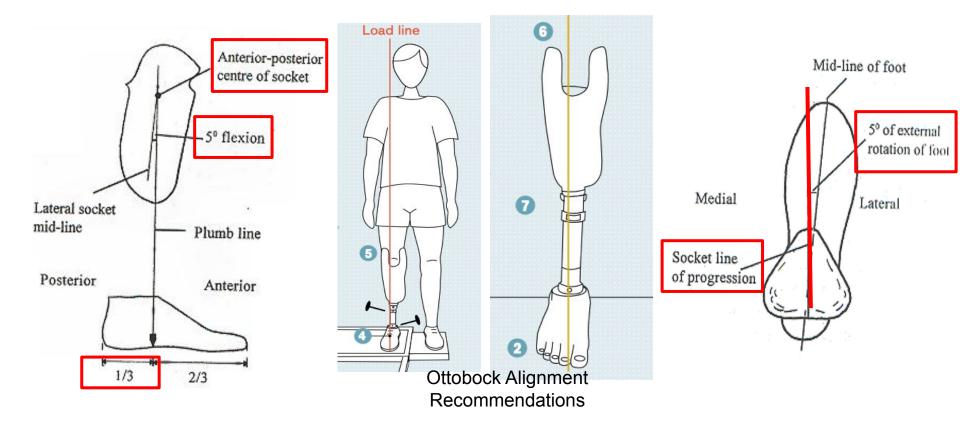
Rockers

Heel Rocker

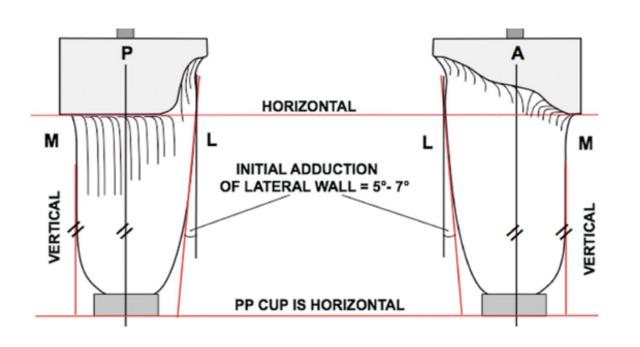
Ankle Rocker

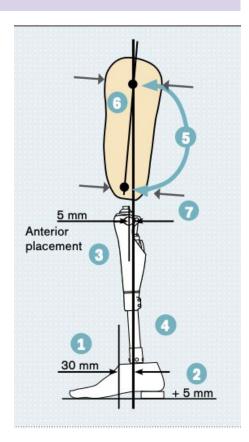
Forefoot Rocker

Determines time until foot flat (soft vs. firm heel).

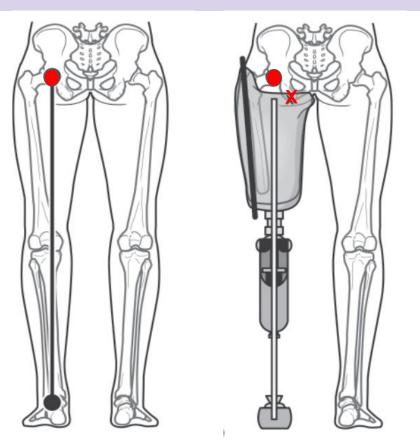


Tibial Advancement: Keel offers resistance to tibial advancement until toe break

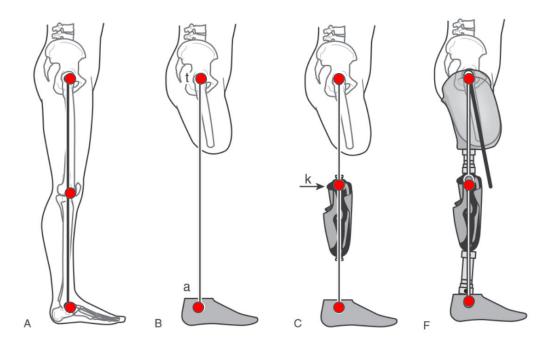



Forefoot dynamics (stiffness) determines rate of heel rise / energy return

BKA Bench Alignment


Transfemoral BENCH Alignment

Transfemoral Alignment (posterior view)


- Hip joint cannot be used as a reference point since it does not fall inside of the socket.
- APPROXIMATE: Locate a point on the socket brim that is
 1" lateral to the location of the ischium
- Plumbline bisects heel
- Foot slightly inset

Muller, M. D. (2016).

Sagittal Plane Alignment Sequence

- Approximate hip joint (greater trochanter)
- Identify T-A line
- Place knee center for voluntary vs. involuntary control.

Muller, M. D. (2016).

Gait Analysis

Instrumented Gait Analysis (IGA)

- 3D motion capture:
 - kinematic parameters (e.g., knee flexion angle)
- Electronic walkways:
 - spatiotemporal parameters (e.g., step length, stance time)
- Inertial measurement unit (IMU):
 - Accelerometer
 - Gyroscope (angular rotation/velocity)
 - Magnetometer (compass)

Kristal, A. (2021)

Observational Gait Analysis (OGA)

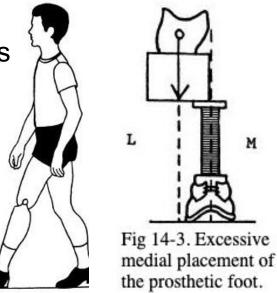
• Primary method in <u>clinical setting</u> to identify presence/absence of gait deviations and help to determine what is the cause.

• Familiar OGAs

- New York University (NYU)
- Ranchos Los Amigos (Rancho)
- Prosthetic Observational Gait Assessment (POGA)
- Prosthetic Observational Gait Score (POGS)

NYU OGA Tool (1980)

- Describes abnormal motion or spatial asymmetry by LEA level
- **BKA**: only list deviations at knee joint during stance phase
- **AKA:** did not include temporal asymmetries, arm, or knee motion.
- Prosthetic alignment heavy
 - Few functional impairments / patient causes
 - Dated terminology (Pre-ESAR feet)


FOOT SLAP

Description: The foot plantar-flexes too rapidly and strikes the floor with a slap (Fig 14-10.).

When to observe: Just after heel strike.

How to observe: From the side. Listen for slap.

Cause: The plantar-flexion bumper is too soft and does not offer enough resistance to foot motion as weight is transferred to the prosthesis.

Kristal, A. (2021)

Fig 14-10. Foot slap.

Ranchos Los Amigos (Rancho) OGA

- Perry et al. (1993)
- 8 phases of gait classified into 3 functional tasks:
 - Weight acceptance (WA)
 - Single limb support (SLS)
 - Single limb advancement (SLA)
- 178 gait deviations
- Not LLA specific
 - No prosthetic-related issues noted

	<u>orial taono</u> .	0 0	0 0	0 0	0 0
	Reference Limb:				
(SLA)	Major Deviation	WA	SLS	S	ĹA
	Minor Deviation	IC LR	MSt TSt	PSw ISw	MSw TSw
	Knee Flexion: Limited				
	Excess Wobbles				
notec	Hyperextends Extension Thrust				
	Varus/Valgus: Vr/Vl				
	Excess Contralateral Flexion				

Major Problem	Task	Most Likely Cause	Significance
WOBBLES	WA SLS	 Impaired proprioception Quadriceps hypertonicity Plantar flexor hypertonicity 	 Decreases forward momentum Decreases limb stability and balance

Assess spastic CP: Fair to moderate inter-rater reliability, Fair to moderate concurrent validity

Prosthetic Observational Gait Analysis (POGA)

- 1997: Dr. Robert Gailey developed an amputee specific OGA
- Established 47 gait deviations from the 178 on the Rancho OGA tool
 - Includes body function impairment, prosthesis and patient related causes. classified by amputation level.

Sagittal View	Weight Acceptance	Single-Limb Support	Swing
Foot/Ankle	foot flat	vaulting (excessive plantarflexion)	
	foot slap	increased dorsiflexion	
	external rotation		
Knee	hyperextension	decreased knee flexion	increased flexion or (excessive heel rise
	increased flexion or (knee instability)		terminal impact
Hip		flexed	
Pelvis		posterior rotation	posterior rotation
		anterior rotation	
Trunk		lordosis	
		floxed	
Arm Swing	uneven		uneven
	decreased		decreased
Stride Length			increased
			decreased
Stance Time		increased	
		decreased	
Toe Clearance			increased
			decreased

Prosthetic Observational Gait Assessment Form

Reliability and validity not reported

Kristal, A. (2021)

Prosthetic Observational Gait Score (POGS)

- 2010: Susan Hillman and colleagues (Anderson Gait Analysis Lab Scotland)
 - **16** gait deviations
 - Scoring permits comparison of ipsilateral to contralateral side

Table 1

Prosthetic observational gait score sheet.

3. Lateral Trunk Lean/Side Flexion

The subject flexes or tilts the upper body in the coronal plane. This would normally be a tilt to the prosthetic side.

Score 1 for moderate, (e.g. displacement of the head up to, and in line with, the supporting foot).

Score 2 for marked, (e.g. displacement beyond the supporting foot).

Possible causes include:

- · Short prosthesis.
- Insufficient lateral support in socket.
- Socket set in abduction.
- Pain or discomfort, especially on lateral distal aspect of residual limb.
- · Weak abductors.
- Abducted gait.

Hillman et al. 2010

		2	1	0	1	2
	Trunk					
1 (s)	Arm swing	-	Asymmetric - contralateral ipsilateral	Normal and symmetric	Asymmetric - ipsilateral > contralateral	Absent or negligible bilateral arm swing
2 (s/c)	Vaulting in stance	Visible heel lift on ipsilateral side	Negligible heel lift on ipsilateral side	Normal	Negligible heel lift on contralateral side	Visible heel lift on contralateral side
3 (c)	Lateral trunk lean/side flexion in stance	Marked to swing side	Moderate to swing side	Normal	Moderate to stance side	Marked to stance side
4 (s)	Peak sagittal position	-	Moderately backward	Normal	Moderately forward	Markedly forward

Validity not reported, fair inter-rater reliability, Good Intra-rater reliability

Functional Lower-Limb Amputee Gait Assessment

- **Purpose:** create a tool enabling PTs and CPs to communicate and collaborate using common language when describing observable gait deviations.
- **Structure:** lists **11** of most common gait deviations with the expected patient and prosthesis cause.
- Pilot study to establish a reliable and valid OGA tool to assess the gait of people with unilateral LLA
 - Only POGS reports on reliability

The Functional Lower-Limb Amputee Gait Assessment (FLAG Assessment): An Observational Gait Analysis Tool for People with Unilateral Lower Limb Amputation

Kristal, Anat

https://scholarship.miami.edu/esploro/outputs/doctoral/The-Functional-Lower-Limb-Amputee-Gait-Assessment/991031573186702976/filesAndLinks?i ndex=0

Functional Lower-Limb Amputee Gait Assessment

APPENDIX E: THE FUNCTIONAL LOWER-LIMB AMPUTEE GAIT ASSESSMENT (FLAG ASSESSMENT)

	Gait Action	Observed Deviation	Expected Normative Observation	Possible Causes
1	Step Width	□ Intact limb foot at midline □ Prosthetic limb abducted	5 to 10 cm (2 to 4 inches)	 Poor balance on the prosthesis Habit of relying more on the intact limb Balance because of intact limb foot at midline Weak or poorly trained prosthetic side musculature
2	Step Length & Time	Intact limb step shorter Intact limb step faster Prosthetic limb step shorter	Minimum 30 cm (12") from toes of trailing limb to the heel of leading limb Temporal symmetry between the prosthetic and intact step time	 Poor balance on the prosthesis Pain or discomfort Decreased confidence Habit of spending too much time on the intact limb
3	Forefoot Load	Decreased prosthetic forefoot load	Forefoot break or rocker	- Poor balance over prosthetic forefoot
4	Knee Flexion	Less than expected knee flexion	30 - 40° at PSw 60° at ISw	 Decreased pelvic rotation Prosthesis too short Too much knee flexion resistance
5	Pelvic Rotation	Lack prosthetic limb forward pelvic rotation	5° forward and backward both sides	 Inadequate pelvic and hip mechanics Prosthesis too short
6	Trunk & Arm Motions	Decreased trunk rotation Asymmetrical arm swing Lateral Trunk Lean	5° in opposition to the pelvis Symmetrical arm swing Neutral, upright alignment	 Poor balance Use of an assistive device Prosthesis too short Weak or poorly trained prosthetic side musculature Habit
	All	No Deviation		

Youtube Video: Ottobock - Dynion 3R85

Kristal, A. (2021)

Copyright© 2008 Advanced Rehabilitation Therapy, INC. Miami, Florida

FLAG: Reliability (K≥ .41)

Kristal, A. (2021)

	PTs Group		CPs Group
1	Prosthetic limb abducted	1	Prosthetic limb abducted
2	Prosthetic limb step shorter	2	Intact limb step faster
3	Lack prosthetic limb forward pelv rotation	ic 3	Prosthetic limb step shorter
4	Lateral trunk lean	4	Less than expected knee flexion
		5	Asymmetrical arm swing
		6	Lateral trunk lean

Table 5.2: Gait Deviations that Achieved Inter-rater Reliability

	PTs Group		CPs Group
1	Prosthetic limb abducted	1	Prosthetic limb abducted
2	Intact limb step shorter	2	Intact limb step shorter
3	Intact limb step faster	3	Intact limb step faster
4	Prosthetic limb step shorter	4	Prosthetic limb step shorter
5	Less than expected knee flexion	5	Less than expected knee flexion
6	Lack prosthetic limb forward pelvic rotation	6	Asymmetrical arm swing
7	Decreased trunk rotation	7	Lateral trunk lean
8	Asymmetrical arm swing		
9	Lateral trunk lean		

FLAG: Validity

- Criterion-concurrent validity of prosthetic limb step shorter was established in community ambulators with unilateral LLA (≥ 80%)
- **Construct validity:** lack prosthetic limb forward pelvic rotation, asymmetrical arm swing, and lateral trunk lean
 - Present = lower balance confidence scores (ABC)
 - Present = slow gait speeds (10MWT)

Takeaway: FLAG Assessment provides an important first step towards establishing a reliable and valid OGA tool to assess the gait of people with unilateral LLA.

Kristal, A. (2021)

Functional Lower-Limb Amputee Gait Assessment

Gait Action	Gait Deviations
1. Step Width	Intact limb foot at midline Prosthetic limb abducted
2. Step Length and Time	Intact Limb Step SHORTER Intact Limb Step FASTER Prosthetic limb step SHORTER
3. Forefoot Load	Decreased prosthetic forefoot load
4. Knee Flexion	Less than expected knee flexion
5. Pelvic Rotation	Reduced PROSTHETIC limb forward rotation
6. Trunk & Arm Motion	Decreased Trunk Rotation Asymmetrical Arm Swing Lateral Trunk Lean

Kristal, A. (2021)

1st Gait Action: Step Width

- **Observe**: Frontal plane
- Gait Task: Weight Acceptance
- Expected norm: 2-4"

Kristal, A.

- Observed gait deviations:
 - Intact foot at midline
 - Prosthetic limb abducted

Gait Action	Observed Deviation	Expected Normative Observation	Possible Causes
Step Width	 Intact limb foot at midline Prosthetic limb abducted 	5 to 10 cm (2 to 4 inches)	 Poor balance on the prosthesis Habit of relying more on the intact limb Balance because of intact limb foot at midline Weak or poorly trained
2021)			prosthetic side musculature

1st Gait Action: Step Width

Let's consider this patient...

Step Width: Intact Foot at Midline

- Observable Signs:
 - Primary: heel placed under intergluteal cleft
 - Secondary: Intact limb in ER
- Possible Causes:
 - Poor balance on prosthesis
 - Habit of relying on sound limb for stability

Step Width: Prosthetic Limb Abducted

• Observable Signs:

- Prosthesis abducted beyond natural line of progression
- Step width >2-4"
- Possible causes:
 - Poor balance / increase stability
 - Weak / Improperly trained prosthetic side hip abductors

2nd Gait Action: Step Length & Time Symmetry

• Observe: Sagittal

- **Expected norm:** >12" (step length) & symmetrical timing of steps
- Observed Gait Deviations:
 - Sound limb step faster
 - Sound limb step shorter
 - Prosthetic limb step shorter

Step Length and Time: Sound Limb Step Faster

- Gait Task: Single limb support
- Observable Signs: Temporal
 - Duration of prosthetic SLS is <u>shorter</u> than sound limb SLS.
- Causes:
 - Poor balance over prosthesis
 - Pain/discomfort
 - Decreased confidence in prosthesis

Step Length and Time: Sound Limb Step Shorter

- Gait Task: Weight Acceptance
- Observable Signs:
 - Distance between prosthetic toes and intact heel <12"
 - Sound limb step length shorter than prosthetic step length
- Possible Causes:
 - Poor balance over prosthesis
 - Pain/discomfort
 - Decreased confidence in prosthesis

Step Length and Time: Prosthetic Limb Step Shorter

- Gait Task: Weight Acceptance
- Observable Signs:
 - Distance between intact toes and prosthetic heel <12"
 - Prosthetic step length is shorter than sound limb step length
- Possible Causes:
 - Habit of spending longer time on sound limb

3rd Gait Action: Forefoot Load

- Observe: Sagittal
- Gait Tasks:
 - Single Limb Support (late)
 - Single Limb Advancement (early)
- **Expected norm:** heel off the ground, MP joints in extension
- Observed gait deviation:
 - Decreased loading of the prosthetic forefoot

Forefoot Load: Decreased prosthetic forefoot load

• Observable Signs:

Primary

- Insufficient time spent on forefoot
- Absence of forefoot crease (MPJ extension)

Kristal, A. (2021)

Secondary (Prosthetic):

- "Lift" and "Kick"
- Circumduction
- Hip Hike

Secondary (Intact):

- Shorter step length
- Vaulting
- **Possible Causes:** Poor balance over prosthetic forefoot

4th Gait Action: Knee Flexion

- Observe: Sagittal
- Gait Task: Single Limb
 Advancement
- Expected norm:

- Pre-Swing: 30-40°
- Initial Swing: 60°
- Observed gait deviation:
 - Less than expected knee flexion

Knee Flexion: Less than expected knee flexion

• Observable signs:

Primary

- <30° flexion at PSw
- <60° flexion at ISw

Secondary (intact)

• Vaulting

Secondary (Prosthetic)

- Circumduction
- Hip Hiking

- Possible Causes:
 - Decreased pelvic rotation on prosthetic side
 - Prosthesis too short

• Excessive knee flexion resistance Kristal, A. (2021)

Reduced knee flexion: Prosthetic Causes

- Swing Phase Control: flexion resistance set too high
- Too stable of alignment: TKA too anterior to knee center
- Prosthesis too short: loss of CKC

5th Gait Action: Pelvic Rotation

- Planes to observe: Frontal & Sagittal
- Gait Task: SLA

- Expected Norm: 5° FWD and BWD pelvic rotation
- Observed gait deviation:
 - Reduced prosthetic limb forward rotation (transverse)

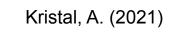
Pelvic Rotation: Reduced transverse pelvic rotation

Observable Signs:

Primary:

• Decreased forward motion of ASIS

Possible causes:


- Inadequate pelvic/hip biomechanics
- Prosthesis too short

Secondary (intact):

- Weight remains on heel
- Toe extension during prosthetic SLA
- Toe flexion during WA
- Vault

Secondary (prosthetic)

- "Lift" and "kick"
- Circumduction
- Hip Hiking

6th Gait Action: Trunk & Arm Motion

- Trunk Expected Norm:
 - **Transverse plane:** 5° rotation in opposition of pelvis
 - **Frontal Plane:** maintain a neutral, upright trunk alignment.
- Arms Expected norm: symmetrical swing
 - Arms are an extension of trunk rotation
- Expected deviations:
 - 1. Decreased trunk rotation
 - 2. Asymmetrical arm swing
 - 3. Lateral trunk lean

Trunk Motion: Decreased trunk rotation

- **Observe** Sagittal
- Gait task: Single limb advancement
- Observable signs:
 - Primary: lack of shoulder rotation in opposition to pelvis
 - Secondary: Abducted arms
- Possible causes:
 - Poor balance
 - Use of an assistive device

Trunk Motion: Lateral trunk lean

- **Observe:** Frontal
- Gait task: Weight acceptance & Single limb support
- **Observable signs:** Trunk shifts laterally beyond prosthesis
- Possible causes:
 - Prosthesis too short
 - Weak or poorly trained prosthetic side hip abductors
 - Pain/discomfort
 - Habit of passively shifting the trunk towards the prosthesis.

Arm motion: Asymmetrical arm swing

- Observe: Sagittal & Frontal
- Gait Task: Single limb advancement
- **Observable signs:** Asymmetrical arm swing (abducted arm)

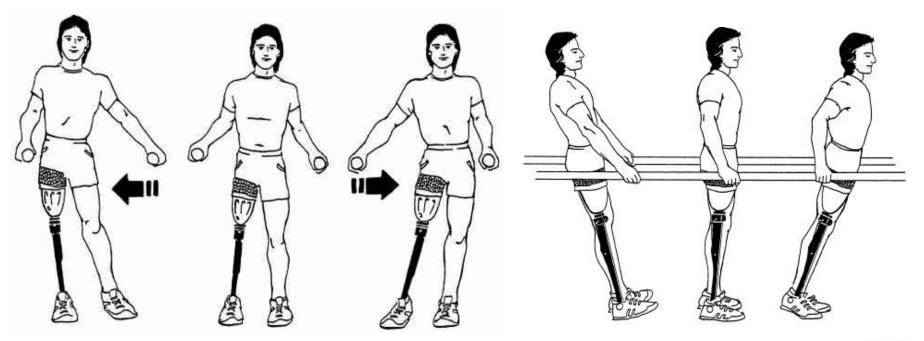
- Possible causes:
 - Poor balance
 - Use of an assistive device

Interventions

Gait Action: Step Width

Equal WB'ing

- **Deviation(s):** Intact foot at midline and prosthesis abducted
- Intervention: Identify new location of CoM to promote equal weight distribution between limbs.
- **How:** Place patient in normal alignment (rotate pelvis)



- Orientation of CoM
 - Using a reflex hammer, tap big toe, little toe, heel
- Cue patient to shift weight to each part of the foot
- Enhances proprioception using the foot as a reference point
 - "roll over the toe"
 - "keep weight over big toe"

Foot-Floor Interface

Weight shifting

Gailey, 1992

Ball Rolls

Pelvic Control Exercises:

- Ball Rolls
- Perform <u>quickly</u> and in <u>all planes</u> to train muscles inside the socket how to respond to multi-directional perturbation

Ossur - Youtube

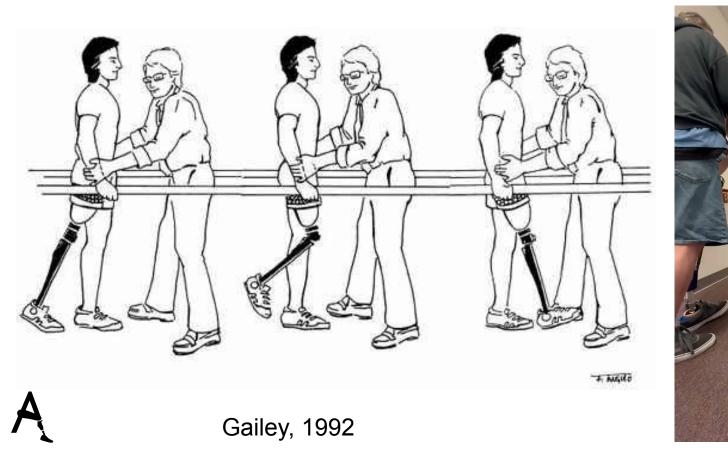
Step Taps

Gait Action: Pelvic Rotation

Sound Limb Stepping

Flex-Foot Exercise - Spotstepping - Ossur Academy

Gait Action: Pelvic Rotation


Rhythmic Initiation

Mission Gait Foundation

Gait Action: Pelvic Rotation

Resistive Gait Training

Gait Action: Trunk Rotation & Arm Swing

Rhythmic Initiation

Mission Gait Foundation

Gait Action: Trunk Rotation & Arm Swing

Resisted Gait Training

Mission Gait Foundation

Gait Action: Trunk & Arm Motion

Ball Roll Progressions

- Deviation: Lateral Trunk Lean
- **Possible Cause:** Weak / Poorly trained Hip Abductors
- Loss of proprioceptive input = Decreased speed of contraction

Gait Action: Forefoot Load

Resisted Gait Training

- **Deviation:** Decreased prosthetic forefoot load
- Intervention: Resisted Ambulation
 - Technique: Resist slightly when weight is over the prosthetic forefoot and sound limb advances

How can PTs address prosthetic related concerns in the clinic?

Signs of a long prosthesis

- Vaulting gait (contralateral side)
- Pistoning / poor suspension
 - Prosthesis functionally long in swing
- Wide base gait (Abducted)
- Circumduction

Signs of Poor Suspension

- Abducted gait
- Socket rotation
- ▲● Pistoning

Summary

- 1. FLAG enables communication between PTs and CPs using a shared language of the 11 most common gait deviations
- 2. PT interventions must train hip strategies, pelvic stability, and ability to displace CoM over BoS.
- 3. Poor balance and lack of confidence over prosthesis can result in 1 or all 11 of the presented gait deviations

Questions?

Michelle Jamin, PT, DPT Michelle@alignrehab-pt.com

References

- 1. Kristal, A. (2021). The Functional Lower-Limb Amputee Gait Assessment (FLAG Assessment): An Observational Gait Analysis Tool for People with Unilateral Lower Limb Amputation (Doctoral dissertation, University of Miami).
- 2. Perry J, Burnfield JM. Gait analysis: Normal and pathological function. 2nd ed. SLACK Incorporated; 2010.
- 3. Gailey RS, Gailey AM. Prosthetic gait training for lower limb amputees. Advanced Rehabilitation Therapy Inc.; 1989.
- 4. Bowker HK, Michael JW (eds): Atlas of Limb Prosthetics: Surgical, Prosthetic, and Rehabilitation Principles. Rosemont, IL, American Academy of Orthopedic Surgeons, edition 2, 1992, reprinted 2002.
- 5. Gailey, R. S., Springer, B. A., Scherer, M., Pasquina, P., & Cooper, R. (2009). Physical therapy for the polytrauma casualty with limb loss. Care Combat Amputee, 451-92.
- 6. Gailey RS, Gaunaurd IA, Laferrier JZ. Physical therapy management of adults with lower limb amputation. In: Krajbich JI, Pinzur MS, Potter BK, Stevens PM, eds. Atlas of Amputation and Limb Deficiencies: Surgical, Prosthetic, and Rehabilitation Principles. Fourth. American Academy of Orthopedic Surgeons; 2016:597-620.
- Agrawal, V., Gailey, R., O'Toole, C., Gaunaurd, I., & Finnieston, A. (2013). Influence of gait training and prosthetic foot category on external work symmetry during unilateral transtibial amputee gait. Prosthetics and orthotics international, 37(5), 396-403.
- 8. New York University. Postgraduate Medical School. Prosthetics and Orthotics. Lower limb prosthetics. Second. New York University Medical Center, Post- Graduate Medical School, Prosthetics and Orthotics; 1980.
- 9. Ziegler-Graham K, MacKenzie EJ, Ephraim PL, Travison TG, Brookmeyer R. Estimating the prevalence of limb loss in the United States: 2005 to 2050. Arch Phys Med Rehabil. 2008;89(3):422-429.
- 10. Gailey RS. Prosthetics and orthotics assessments. In: Brunt D, Van Deussen J, eds. Assessment in Occupational Therapy and Physical Therapy. W.B. Saunders Company; 1997:199-216.
- 11. Hillman SJ, Donald SC, Herman J, et al. Repeatability of a new observational gait score for unilateral lower limb amputees. Gait Posture. 2010;32(1):39-45.